RAM - Randomic Access Machine - Computer Abstract Models
https://www.youtube.com/watch?v=wkBjD0Fvl6U
https://www.youtube.com/watch?v=by1HmASLHkM
https://www.youtube.com/watch?list=PLdWP0vILtbJm65uofYypM_lxU9A2Ey7ow&v=gSyDMtdPNpU
https://www.algorist.com/
https://www5.in.tum.de/lehre/vorlesungen/fundalg/WS02/docs/ram.pdf
http://www.cse.cuhk.edu.hk/~andrejb/csc3130/f10/notes/10N17.pdf
https://pt.wikipedia.org/wiki/M%C3%A1quina_de_registradores
https://medium.com/@_SD10_/the-ram-model-of-computation-and-big-o-notation-a1b3cc50ec2c
https://www.udacity.com/course/computability-complexity-algorithms--ud061
https://www.udacity.com/course/intro-to-theoretical-computer-science--cs313
CallStack
https://edisciplinas.usp.br/pluginfile.php/2945087/mod_resource/content/1/13-PilhaExecucao-exercicio-v2.pdf
https://pt.wikipedia.org/wiki/Pilha_de_chamada
Compute Matrix Determinant A square matrix \(A\), \[\begin{aligned} A = \begin{bmatrix} a_{1,1} & a_{1,2} & ... & a_{1,n} \\ a_{2,1} & a_{2,2} & ... & a_{2,n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n,1} & a_{n,2} & \ldots & a_{n,n} \end{bmatrix} \end{aligned}\] Be \(A\) a matrix \(n \times n\) and \(n \geqslant 2\). The determinant of \(A\) is scalar give by \(|A| = det(A)\), \[det(A) = \sum_{k=1}^{n} a_{i,j} C_{i,j}\] where \(C_{i,j}\) is cofactor, \[C_{i,j} = (-1)^{i+j} det( A_{i,j} )\] Example \(\bullet\) Compute the determinant of matrix \(A\) showed bellow, \[\begin{aligned} A = \begin{bmatrix} 1 & 1 & 3 \\ 2 & 5 & 7 \\ 12 & 6 & 1 \end{bmatrix} \end{aligned}\] Resolution Choice expansion for row \(1\), \[det(A) = \sum_{k=1}^{3} a_{1,k} (-1)^{1+k} det\left( A_{1,k} \right) = \] \[ = 1 (-1)^{1+1 }det \left( \begin{bmatrix} 5 & 7 \\ 6 & 1 \end{bmatrix} \right) + 1 (-1)^{1+2} det \left( \begin...
Comentários
Postar um comentário